Try to solve the exercises below by inspecting the examples. Not sure how to start? You can type Ctrl + space or Command + space to get a list of possible options.
Require Import Rbase. Require Import Rfunctions. Require Import Waterproof.Waterproof. Require Import Waterproof.Notations.Common. Require Import Waterproof.Notations.Reals. Require Import Waterproof.Notations.Sets. Require Import Waterproof.Chains. Require Import Waterproof.Tactics. Require Import Waterproof.Libs.Analysis.SupAndInf. Require Import Waterproof.Automation. Waterproof Enable Automation RealsAndIntegers. Open Scope R_scope. Open Scope subset_scope. Set Default Goal Selector "!". Set Nested Proofs Allowed. Notation "'max(' x , y )" := (Rmax x y) (format "'max(' x , y ')'"). Notation "'min(' x , y )" := (Rmin x y) (format "'min(' x , y ')'").
# 1. We conclude that
0 = 00 = 0We conclude that (0 = 0). Qed.0 = 0
Note: Note sure how to continue? You can always write the sentence Help. in your proof to ask for help. Please remove the sentence from your final proof.
3 = 33 = 3
Admitted.
Sometimes it is useful to remind the reader or yourself of what you need to show.
2 = 22 = 2We conclude that (2 = 2). Qed.2 = 2
7 = 77 = 7
Admitted.
∀ x ∈ ℝ, x = x∀ x ∈ ℝ, x = xWe conclude that (x = x). Qed.x: ℝ
_H: x ∈ ℝx = x
∀ x ∈ ℝ, x + 3 = 3 + x∀ x ∈ ℝ, x + 3 = 3 + x
Admitted.
∃ y ∈ ℝ, y < 3∃ y ∈ ℝ, y < 3y:= 2: ℝ
_defeq: y = 2Add the following line to the proof: { Indeed, (y ∈ ℝ). } or write: { We need to verify that (y ∈ ℝ). } if intermediary proof steps are required.y:= 2: ℝ
_defeq: y = 2Add the following line to the proof: We need to show that (y < 3). or write: We conclude that (y < 3). if no intermediary proof steps are required.Indeed, (y ∈ ℝ).y:= 2: ℝ
_defeq: y = 2Add the following line to the proof: { Indeed, (y ∈ ℝ). } or write: { We need to verify that ( y ∈ ℝ). } if intermediary proof steps are required.We conclude that (y < 3). Qed.y:= 2: ℝ
_defeq: y = 2Add the following line to the proof: We need to show that (y < 3). or write: We conclude that (y < 3). if no intermediary proof steps are required.
∃ z > 10, z < 14∃ z > 10, z < 14
Admitted.
∀ a ∈ ℝ, ∀ b > 5, ∃ c ∈ ℝ, c > b - a∀ a ∈ ℝ, ∀ b > 5, ∃ c ∈ ℝ, c > b - aa: ℝ
_H: a ∈ ℝ∀ b > 5, ∃ c ∈ ℝ, c > b - aa: ℝ
_H: a ∈ ℝ
b: ℝ
_H0: b > 5∃ c ∈ ℝ, c > b - aa: ℝ
_H: a ∈ ℝ
b: ℝ
_H0: b > 5
c:= b - a + 1: ℝ
_defeq: c = b - a + 1Add the following line to the proof: { Indeed, (c ∈ ℝ). } or write: { We need to verify that (c ∈ ℝ). } if intermediary proof steps are required.a: ℝ
_H: a ∈ ℝ
b: ℝ
_H0: b > 5
c:= b - a + 1: ℝ
_defeq: c = b - a + 1Add the following line to the proof: We need to show that (c > b - a). or write: We conclude that (c > b - a). if no intermediary proof steps are required.Indeed, (c ∈ ℝ).a: ℝ
_H: a ∈ ℝ
b: ℝ
_H0: b > 5
c:= b - a + 1: ℝ
_defeq: c = b - a + 1Add the following line to the proof: { Indeed, (c ∈ ℝ). } or write: { We need to verify that ( c ∈ ℝ). } if intermediary proof steps are required.We conclude that (c > b - a). Qed.a: ℝ
_H: a ∈ ℝ
b: ℝ
_H0: b > 5
c:= b - a + 1: ℝ
_defeq: c = b - a + 1Add the following line to the proof: We need to show that (c > b - a). or write: We conclude that (c > b - a). if no intermediary proof steps are required.
∀ x > 3, ∀ y ≥ 4, ∃ z ∈ ℝ, x < z - y∀ x > 3, ∀ y ≥ 4, ∃ z ∈ ℝ, x < z - y
Admitted.
∀ a ∈ ℝ, a < 0 ⇨ - a > 0∀ a ∈ ℝ, a < 0 ⇨ - a > 0a: ℝ
_H: a ∈ ℝa < 0 ⇨ - a > 0We conclude that (- a > 0). Qed.a: ℝ
_H: a ∈ ℝ
_H0: a < 0- a > 0
∀ a ∈ ℝ, a < 0 ⇨ - a > 0∀ a ∈ ℝ, a < 0 ⇨ - a > 0a: ℝ
_H: a ∈ ℝa < 0 ⇨ - a > 0By (i) we conclude that (- a > 0). Qed.a: ℝ
_H: a ∈ ℝ
i: a < 0- a > 0
∀ a ≥ 2, ∀ b ∈ ℝ, a > 0 ⇨ b > 0 ⇨ a + b > -1∀ a ≥ 2, ∀ b ∈ ℝ, a > 0 ⇨ b > 0 ⇨ a + b > -1
Admitted.
Section monotone_function. Variable f : ℝ → ℝ. Parameter f_increasing : ∀ x ∈ ℝ, ∀ y ∈ ℝ, x ≤ y ⇒ f(x) ≤ f(y).f: ℝ ⇨ ℝ2 < f(0) ⇨ 2 < f(1)f: ℝ ⇨ ℝ2 < f(0) ⇨ 2 < f(1)By (f_increasing) we conclude that (& 2 < f(0) ≤ f(1)). Qed.f: ℝ ⇨ ℝ
_H: 2 < f(0)2 < f(1)
f: ℝ ⇨ ℝf(3) < 5 ⇨ f(-1) < 5f: ℝ ⇨ ℝf(3) < 5 ⇨ f(-1) < 5
Admitted.
f: ℝ ⇨ ℝ3 < f(0) ⇨ 2 < f(5)f: ℝ ⇨ ℝ3 < f(0) ⇨ 2 < f(5)f: ℝ ⇨ ℝ
_H: 3 < f(0)2 < f(5)By (f_increasing) we conclude that (f(0) ≤ f(5)). Qed.f: ℝ ⇨ ℝ
_H: 3 < f(0)f(0) ≤ f(5)
f: ℝ ⇨ ℝf(5) < 4 ⇨ f(-2) < 5f: ℝ ⇨ ℝf(5) < 4 ⇨ f(-2) < 5
Admitted.
f: ℝ ⇨ ℝ7 < f(-1) ⇨ 2 < f(6)f: ℝ ⇨ ℝ7 < f(-1) ⇨ 2 < f(6)f: ℝ ⇨ ℝ
_H: 7 < f(-1)2 < f(6)We conclude that (2 < f(6)). Qed.f: ℝ ⇨ ℝ
_H: 7 < f(-1)
_H0: f(-1) ≤ f(6)2 < f(6)
f: ℝ ⇨ ℝf(7) < 8 ⇨ f(3) ≤ 10f: ℝ ⇨ ℝf(7) < 8 ⇨ f(3) ≤ 10
Admitted.
End monotone_function.
∀ x ∈ ℝ, (∀ ε > 0, x < ε) ⇨ x + 1 / 2 < 1∀ x ∈ ℝ, (∀ ε > 0, x < ε) ⇨ x + 1 / 2 < 1x: ℝ
_H: x ∈ ℝ(∀ ε > 0, x < ε) ⇨ x + 1 / 2 < 1x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x < εx + 1 / 2 < 1x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x < ε
_H0: 1 / 2 > 0 ⇨ x < 1 / 2Add the following line to the proof: { Indeed, (1 / 2 > 0). } or write: { We need to verify that (1 / 2 > 0). } if intermediary proof steps are required.x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x < ε
_H0: x < 1 / 2
_H1: 1 / 2 > 0Add the following line to the proof: It holds that (x < 1 / 2).Indeed, (1 / 2 > 0).x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x < ε
_H0: 1 / 2 > 0 ⇨ x < 1 / 2Add the following line to the proof: { Indeed, (1 / 2 > 0). } or write: { We need to verify that (1 / 2 > 0). } if intermediary proof steps are required.x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x < ε
_H0: x < 1 / 2
_H1: 1 / 2 > 0Add the following line to the proof: It holds that (x < 1 / 2).We conclude that (x + 1/2 < 1). Qed.x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x < ε
_H1: 1 / 2 > 0
_H2: x < 1 / 2x + 1 / 2 < 1
∀ x ∈ ℝ, (∀ ε > 0, x < ε) ⇨ 10 * x < 1∀ x ∈ ℝ, (∀ ε > 0, x < ε) ⇨ 10 * x < 1
Admitted.
∀ x ∈ ℝ, (∃ y > 10, y < x) ⇨ 10 < x∀ x ∈ ℝ, (∃ y > 10, y < x) ⇨ 10 < xx: ℝ
_H: x ∈ ℝ(∃ y > 10, y < x) ⇨ 10 < xx: ℝ
_H: x ∈ ℝ
i: ∃ y > 10, y < x10 < xWe conclude that (& 10 < y < x). Qed.x: ℝ
_H: x ∈ ℝ
y: ℝ
_H1: y > 10
_H0: y < x
i: ∃ y > 10, y < x10 < x
∀ x ∈ ℝ, (∃ y > 14, y < x) ⇨ 12 < x∀ x ∈ ℝ, (∃ y > 14, y < x) ⇨ 12 < xx: ℝ
_H: x ∈ ℝ(∃ y > 14, y < x) ⇨ 12 < xx: ℝ
_H: x ∈ ℝ
i: ∃ y > 14, y < x12 < xWe conclude that (& 12 < y < x). Qed.x: ℝ
_H: x ∈ ℝ
y: ℝ
_H1: y > 14
_H0: y < x
i: ∃ y > 14, y < x12 < x
∀ z ∈ ℝ, (∃ x ≥ 5, x ^ 2 < z) ⇨ 25 < z∀ z ∈ ℝ, (∃ x ≥ 5, x ^ 2 < z) ⇨ 25 < z
Admitted.
∀ x ∈ ℝ, (∀ ε > 0, x > 1 - ε) ⇨ x ≥ 1∀ x ∈ ℝ, (∀ ε > 0, x > 1 - ε) ⇨ x ≥ 1x: ℝ
_H: x ∈ ℝ(∀ ε > 0, x > 1 - ε) ⇨ x ≥ 1x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x > 1 - εx ≥ 1x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x > 1 - εx ≥ 1x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x > 1 - εAdd the following line to the proof: Assume that (¬ x ≥ 1).x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x > 1 - ε
_H0: ¬ x ≥ 1Derive a contradiction.x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x > 1 - ε
_H0: ¬ x ≥ 1
_H1: 1 - x > 0Derive a contradiction.Contradiction. Qed.x: ℝ
_H: x ∈ ℝ
i: ∀ ε > 0, x > 1 - ε
_H0: ¬ x ≥ 1
_H1: 1 - x > 0
_H2: x > 1 - (1 - x)Derive a contradiction.
∀ x ∈ ℝ, (∀ ε > 0, x < ε) ⇨ x ≤ 0∀ x ∈ ℝ, (∀ ε > 0, x < ε) ⇨ x ≤ 0
Admitted.
∀ x ∈ ℝ, ∀ y ∈ ℝ, max(x, y) = x ∨ max(x, y) = y∀ x ∈ ℝ, ∀ y ∈ ℝ, max(x, y) = x ∨ max(x, y) = y
x: ℝ
_H: x ∈ ℝ∀ y ∈ ℝ, max(x, y) = x ∨ max(x, y) = yx: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝmax(x, y) = x ∨ max(x, y) = yx: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
H: x < yAdd the following line to the proof: - Case (x < y).x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
H: x ≥ yAdd the following line to the proof: - Case (x ≥ y).x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
H: x < yAdd the following line to the proof: - Case (x < y).x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
H: x < ymax(x, y) = x ∨ max(x, y) = yWe conclude that (max(x, y) = y).x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
H: x < ymax(x, y) = yx: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
H: x ≥ yAdd the following line to the proof: - Case (x ≥ y).x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
H: x ≥ ymax(x, y) = x ∨ max(x, y) = yWe conclude that (max(x, y) = x). Qed.x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
H: x ≥ ymax(x, y) = x
∀ x ∈ ℝ, ∀ y ∈ ℝ, min(x, y) = x ∨ min(x, y) = y∀ x ∈ ℝ, ∀ y ∈ ℝ, min(x, y) = x ∨ min(x, y) = y
Admitted.
∀ x ∈ ℝ, x ^ 2 ≥ 0 ∧ |x| ≥ 0∀ x ∈ ℝ, x ^ 2 ≥ 0 ∧ |x| ≥ 0x: ℝ
_H: x ∈ ℝx ^ 2 ≥ 0 ∧ |x| ≥ 0x: ℝ
_H: x ∈ ℝAdd the following line to the proof: We need to show that (x ^ 2 ≥ 0). or write: We conclude that (x ^ 2 ≥ 0). if no intermediary proof steps are required.x: ℝ
_H: x ∈ ℝAdd the following line to the proof: We need to show that (|x| ≥ 0). or write: We conclude that (|x| ≥ 0). if no intermediary proof steps are required.x: ℝ
_H: x ∈ ℝAdd the following line to the proof: We need to show that (x ^ 2 ≥ 0). or write: We conclude that (x ^ 2 ≥ 0). if no intermediary proof steps are required.We conclude that (x^2 ≥ 0).x: ℝ
_H: x ∈ ℝx ^ 2 ≥ 0x: ℝ
_H: x ∈ ℝAdd the following line to the proof: We need to show that (|x| ≥ 0). or write: We conclude that (|x| ≥ 0). if no intermediary proof steps are required.We conclude that (| x | ≥ 0). Qed.x: ℝ
_H: x ∈ ℝ|x| ≥ 0
∀ x ∈ ℝ, 0 * x = 0 ∧ x + 1 > x∀ x ∈ ℝ, 0 * x = 0 ∧ x + 1 > x
Admitted.
∀ x ∈ ℝ, ∀ y ∈ ℝ, x < y ⇔ y > x∀ x ∈ ℝ, ∀ y ∈ ℝ, x < y ⇔ y > xx: ℝ
_H: x ∈ ℝ∀ y ∈ ℝ, x < y ⇔ y > xx: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝx < y ⇔ y > xx: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝAdd the following line to the proof: We need to show that (x < y ⇨ y > x). or write: We conclude that (x < y ⇨ y > x). if no intermediary proof steps are required.x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝAdd the following line to the proof: We need to show that (y > x ⇨ x < y). or write: We conclude that (y > x ⇨ x < y). if no intermediary proof steps are required.x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝAdd the following line to the proof: We need to show that (x < y ⇨ y > x). or write: We conclude that (x < y ⇨ y > x). if no intermediary proof steps are required.x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝx < y ⇨ y > xWe conclude that (y > x).x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
_H1: x < yy > xx: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝAdd the following line to the proof: We need to show that (y > x ⇨ x < y). or write: We conclude that (y > x ⇨ x < y). if no intermediary proof steps are required.x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝy > x ⇨ x < yWe conclude that (x < y). Qed.x: ℝ
_H: x ∈ ℝ
y: ℝ
_H0: y ∈ ℝ
_H1: y > xx < y
∀ x ∈ ℝ, x > 1 ⇔ x - 1 > 0∀ x ∈ ℝ, x > 1 ⇔ x - 1 > 0
Admitted.
∀ n, (∀ k ∈ ℕ, (n(k) < n(k + 1))%nat) ⇨ ∀ k ∈ ℕ, (k ≤ n(k))%nat∀ n, (∀ k ∈ ℕ, (n(k) < n(k + 1))%nat) ⇨ ∀ k ∈ ℕ, (k ≤ n(k))%natn: ℕ ⇨ ℕ(∀ k ∈ ℕ, (n(k) < n(k + 1))%nat) ⇨ ∀ k ∈ ℕ, (k ≤ n(k))%natn: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%nat∀ k ∈ ℕ, (k ≤ n(k))%natn: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%natAdd the following line to the proof: - We first show the base case ((0 ≤ n(0))%nat).n: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%natAdd the following line to the proof: - We now show the induction step.n: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%natAdd the following line to the proof: - We first show the base case ((0 ≤ n(0))%nat).We conclude that (0 ≤ n(0))%nat.n: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%nat(0 ≤ n(0))%natn: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%natAdd the following line to the proof: - We now show the induction step.n: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%nat∀ k ∈ ℕ, (k ≤ n(k))%nat ⇨ (k + 1 ≤ n(k + 1))%natn: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%nat
k: ℕ
_H0: k ∈ ℕ(k ≤ n(k))%nat ⇨ (k + 1 ≤ n(k + 1))%natn: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%nat
k: ℕ
_H0: k ∈ ℕ
_H1: (k ≤ n(k))%nat(k + 1 ≤ n(k + 1))%natn: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%nat
k: ℕ
_H0: k ∈ ℕ
_H1: (k ≤ n(k))%nat
_H2: (n(k) < n(k + 1))%nat(k + 1 ≤ n(k + 1))%natWe conclude that (& k + 1 ≤ n(k) + 1 ≤ n(k + 1))%nat. Qed.n: ℕ ⇨ ℕ
_H: ∀ k ∈ ℕ, (n(k) < n(k + 1))%nat
k: ℕ
_H0: k ∈ ℕ
_H1: (k ≤ n(k))%nat
_H2: (n(k) < n(k + 1))%nat
_H3: (n(k) + 1 ≤ n(k + 1))%nat(k + 1 ≤ n(k + 1))%nat
∀ F, (∀ k ∈ ℕ, F((k + 1)%nat) = F(k)) ⇨ ∀ k ∈ ℕ, F(k) = F(0%nat)∀ F, (∀ k ∈ ℕ, F((k + 1)%nat) = F(k)) ⇨ ∀ k ∈ ℕ, F(k) = F(0%nat)
Admitted.
By writing Expand the definition of square. you get suggestions on how to use the definition of square in your proof.
Definition square (x : ℝ) := x^2.
∀ x ∈ ℝ, square(x) ≥ 0∀ x ∈ ℝ, square(x) ≥ 0x: ℝ
_H: x ∈ ℝsquare(x) ≥ 0(* Remove the above line in your own code! *)x: ℝ
_H: x ∈ ℝsquare(x) ≥ 0We conclude that (x^2 ≥ 0). Qed.x: ℝ
_H: x ∈ ℝx ^ 2 ≥ 0
∀ x ∈ ℝ, - square(x) ≤ 0∀ x ∈ ℝ, - square(x) ≤ 0
Admitted.