Library Waterproof.Chains.Inequalities


Require Import Reals.Rbase.

Unset Auto Template Polymorphism.

Abstract representations for =, <, ≤, > and ≥ symbols.


Inductive EqualRel := | chain_eq.
Inductive LessRel := | chain_lt | chain_le.
Inductive GreaterRel := | chain_gt | chain_ge.

Types of chains.

Only contains =- relations.


Inductive EqualChain (T : Type) :=
  | base_ec : T -> EqualRel * T -> EqualChain T
  | link_ec_eq : EqualChain T -> EqualRel * T -> EqualChain T.

Inductive LessChain (T : Type) :=
  | base_lc : T -> LessRel * T -> LessChain T
  | link_ec_less : EqualChain T -> LessRel * T -> LessChain T
link < or ≤ and term to equality chain
link term to chain with =-relation
link term to chain with <- or ≤-relation
link > or ≥ and term to equality chain
link term to chain with =-relation
link term to chain with >- or ≥-relation
** Type classes for linking new terms to chains.
Type classes are used for notation overloading of link function chain_link
Class ChainLink (A B C : Type) := chain_link : A -> B -> C.

#[export] Instance link_ec_eq_inst (T : Type) : ChainLink (EqualChain T) (EqualRel * T) (EqualChain T) := link_ec_eq T.
#[export] Instance link_ec_less_inst (T : Type) : ChainLink (EqualChain T) (LessRel * T) (LessChain T) := link_ec_less T.
#[export] Instance link_lc_eq_inst (T : Type) : ChainLink (LessChain T) (EqualRel * T) (LessChain T) := link_lc_eq T.
#[export] Instance link_lc_less_inst (T : Type) : ChainLink (LessChain T) (LessRel * T) (LessChain T) := link_lc_less T.
#[export] Instance link_ec_grtr_inst (T : Type) : ChainLink (EqualChain T) (GreaterRel * T) (GreaterChain T) := link_ec_grtr T.
#[export] Instance link_gc_eq_inst (T : Type) : ChainLink (GreaterChain T) (EqualRel * T) (GreaterChain T) := link_gc_eq T.
#[export] Instance link_gc_grtr_inst (T : Type) : ChainLink (GreaterChain T) (GreaterRel * T) (GreaterChain T) := link_gc_grtr T.

Class ChainBase (A B C : Type) := chain_base : A -> B -> C.

#[export] Instance base_ec_inst (T : Type) : ChainBase T (EqualRel * T) (EqualChain T) := base_ec T.
#[export] Instance base_lc_inst (T : Type) : ChainBase T (LessRel * T) (LessChain T) := base_lc T.
#[export] Instance base_gc_inst (T : Type) : ChainBase T (GreaterRel * T) (GreaterChain T) := base_gc T.

Helper functions

Head: first term in a chain

Fixpoint ec_head {T : Type} (c : EqualChain T) : T :=
  match c with
    | base_ec _ x y => x
    | link_ec_eq _ ec z => ec_head ec
  end.

Fixpoint lc_head {T : Type} (c : LessChain T) : T :=
  match c with
    | base_lc _ x _ => x
    | link_ec_less _ ec _ => ec_head ec
    | link_lc_eq _ lc _ => lc_head lc
    | link_lc_less _ lc _ => lc_head lc
  end.

Fixpoint gc_head {T : Type} (c : GreaterChain T) : T :=
  match c with
    | base_gc _ x _ => x
    | link_ec_grtr _ ec _ => ec_head ec
    | link_gc_eq _ gc _ => gc_head gc
    | link_gc_grtr _ gc _ => gc_head gc
  end.

Tail: last term in a chain

Definition ec_tail {T : Type} (c : EqualChain T) : T :=
  match c with
    | base_ec _ _ (_,y) => y
    | link_ec_eq _ _ (_,z) => z
  end.

Definition lc_tail {T : Type} (c : LessChain T) : T :=
  match c with
    | base_lc _ _ (_,y) => y
    | link_ec_less _ _ (_,z) => z
    | link_lc_eq _ _ (_,z) => z
    | link_lc_less _ _ (_,z) => z
  end.

Definition gc_tail {T : Type} (c : GreaterChain T) : T :=
  match c with
    | base_gc _ x (_,y) => y
    | link_ec_grtr _ _ (_,z) => z
    | link_gc_eq _ _ (_,z) => z
    | link_gc_grtr _ _ (_,z) => z
  end.

* Chains contain multiple meanings:

the global statement of (0 < 1 <= 2) is (0 < 2),

the weak global statement is (0 <= 2),

the total statement is (0 < 1 /\ 1 <= 2)

Again a type class is used such that we can use the same terms and notations for all three types of chains.
Class InterpretableChain (T : Type) (C : Type -> Type) :=
  {
    global_statement : C T -> Prop;
    weak_global_statement : C T -> Prop;
    total_statement : C T -> Prop
  }.

Notations for link type classes

Declare Scope chain_scope.
Delimit Scope chain_scope with chain.
Notation "< y" := (chain_lt, y) (at level 69, y at next level) : chain_scope.
Notation "<= y" := (chain_le, y) (at level 69, y at next level) : chain_scope.
Notation "≤ y" := (chain_le, y) (at level 69, y at next level) : chain_scope.
Notation "= y" := (chain_eq, y) (at level 69, y at next level) : chain_scope.
Notation "> y" := (chain_gt, y) (at level 69, y at next level) : chain_scope.
Notation ">= y" := (chain_ge, y) (at level 69, y at next level) : chain_scope.
Notation "≥ y" := (chain_ge, y) (at level 69, y at next level) : chain_scope.

Full chain

Notation "& x ly lz .. lw" :=
  (total_statement (chain_link .. (chain_link (chain_base x ly%chain) lz%chain) .. lw%chain))
  (at level 70, x at next level, ly at next level, lw at next level).

Notation "& x ly" := (total_statement (chain_base x ly%chain)) (at level 70, x at next level, ly at next level) : chain_scope.

** Functions to turn the abstract EqualRel relation into their concrete interpretations, which could as a use case also be a setoid inpterpretation. We use type classes to be able to use the same name for these functions across types that implement them.
Class EqualInterpretation (T : Type) := { eq_rel_to_pred : EqualRel -> T -> T -> Prop }.

Particular instance of the ordinary Leibniz equality as an EqualInterpretation.
#[export] Instance equal_interpretation (T : Type) : EqualInterpretation T := { eq_rel_to_pred rel x y := x = y }.

Global & total statement - EqualChain

Definition ec_global_statement (T : Type) `{! EqualInterpretation T} (c : EqualChain T) : Prop :=
  eq_rel_to_pred chain_eq (ec_head c) (ec_tail c).

Fixpoint ec_total_statement (T : Type) `{! EqualInterpretation T} (c : EqualChain T) : Prop :=
  match c with
    | base_ec _ x (_,y) => eq_rel_to_pred chain_eq x y
    | link_ec_eq _ ec (_,z) => (ec_total_statement _ ec) /\ (eq_rel_to_pred chain_eq (ec_tail ec) z)
  end.

#[export] Instance ec_interpretable (T : Type) `{! EqualInterpretation T}: InterpretableChain T EqualChain :=
  {
    global_statement := ec_global_statement T;
    weak_global_statement := ec_global_statement T;
    total_statement := ec_total_statement T
  }.

Helper functions specific to Less- and GreaterChain.

The global relation resulting from a combination of relations rel1 and rel2.

Definition less_relation_flow (rel1 rel2 : LessRel) : LessRel :=
  match rel1 with
    | chain_lt => chain_lt
    | chain_le => rel2
  end.

Definition grtr_relation_flow (rel1 rel2 : GreaterRel) : GreaterRel :=
  match rel1 with
    | chain_gt => chain_gt
    | chain_ge => rel2
  end.

Returns the global relation of a LessChain.

Fixpoint global_less_rel {T : Type} (c : LessChain T) : LessRel :=
  match c with
    | base_lc _ _ (rel,_) => rel
    | link_ec_less _ _ (rel,_) => rel
    | link_lc_eq _ lc _ => global_less_rel lc
    | link_lc_less _ lc (rel,_) => less_relation_flow (global_less_rel lc) rel
  end.

Returns the global relation of a GreaterChain.

Fixpoint global_grtr_rel {T : Type} (c : GreaterChain T) : GreaterRel :=
  match c with
    | base_gc _ _ (rel,_) => rel
    | link_ec_grtr _ _ (rel,_) => rel
    | link_gc_eq _ gc _ => global_grtr_rel gc
    | link_gc_grtr _ gc (rel,_) => grtr_relation_flow (global_grtr_rel gc) rel
  end.

* Functions to turn the abstract LessRel and GreaterRel relations into their concrete interpretations. We again use type classes to be able to use the same name for these functions across types that implement them.
Class OrderInterpretation (T : Type) :=
  {
    less_rel_to_pred : LessRel -> T -> T -> Prop;
    grtr_rel_to_pred : GreaterRel -> T -> T -> Prop
  }.

Global & total statement - LessChain

Definition lc_global_statement (T : Type) `{! OrderInterpretation T} (c : LessChain T) : Prop :=
  less_rel_to_pred (global_less_rel c) (lc_head c) (lc_tail c).

Definition lc_weak_global_statement (T : Type) `{! OrderInterpretation T} (c : LessChain T) : Prop :=
  less_rel_to_pred chain_le (lc_head c) (lc_tail c).

Fixpoint lc_total_statement (T : Type) `{! OrderInterpretation T} (c : LessChain T) : Prop :=
  match c with
    | base_lc _ x (rel,y) => less_rel_to_pred rel x y
    | link_ec_less _ ec (rel,z) => (ec_total_statement _ ec) /\ less_rel_to_pred rel (ec_tail ec) z
    | link_lc_eq _ lc (_,z) => (lc_total_statement _ lc) /\ (lc_tail lc = z)
    | link_lc_less _ lc (rel,z) => (lc_total_statement _ lc) /\ less_rel_to_pred rel (lc_tail lc) z
  end.

#[export] Instance lc_interpretable (T : Type) `{! OrderInterpretation T} : InterpretableChain T LessChain :=
  {
    global_statement := lc_global_statement T;
    weak_global_statement := lc_weak_global_statement T;
    total_statement := lc_total_statement T
  }.

Global & total statement - GreaterChain


Definition gc_global_statement (T : Type) `{! OrderInterpretation T} (c : GreaterChain T) : Prop :=
  grtr_rel_to_pred (global_grtr_rel c) (gc_head c) (gc_tail c).

Definition gc_weak_global_statement (T : Type) `{! OrderInterpretation T} (c : GreaterChain T) : Prop :=
  grtr_rel_to_pred chain_ge (gc_head c) (gc_tail c).

Fixpoint gc_total_statement (T : Type) `{! OrderInterpretation T} (c : GreaterChain T) : Prop :=
  match c with
    | base_gc _ x (rel,y) => grtr_rel_to_pred rel x y
    | link_ec_grtr _ ec (rel,z) => (ec_total_statement _ ec) /\ grtr_rel_to_pred rel (ec_tail ec) z
    | link_gc_eq _ gc (_,z) => (gc_total_statement _ gc) /\ (gc_tail gc = z)
    | link_gc_grtr _ gc (rel,z) => (gc_total_statement _ gc) /\ grtr_rel_to_pred rel (gc_tail gc) z
  end.

#[export] Instance gc_interpretable (T : Type) `{! OrderInterpretation T} : InterpretableChain T GreaterChain :=
  {
    global_statement := gc_global_statement T;
    weak_global_statement := gc_weak_global_statement T;
    total_statement := gc_total_statement T
  }.

Interpretations of LessRel and GreaterRel for the naturals.

#[export] Instance order_interpretation_nat : OrderInterpretation nat :=
  {
    less_rel_to_pred rel x y := match rel with | chain_lt => (x < y) | chain_le => (x <= y) end;
    grtr_rel_to_pred rel x y := match rel with | chain_gt => (x > y) | chain_ge => (x >= y) end
  }.

Interpretations of LessRel and GreaterRel for the reals.

Open Scope R_scope.

#[export] Instance order_interpretation_R : OrderInterpretation R :=
  {
    less_rel_to_pred rel x y := match rel with | chain_lt => (x < y) | chain_le => (x <= y) end;
    grtr_rel_to_pred rel x y := match rel with | chain_gt => (x > y) | chain_ge => (x >= y) end
  }.

Close Scope R_scope.

* Because the typeclasses used for the link-symbols '&=' are so general, they are unable to automatically make use of coercions, e.g. the chain (& INR 0 < 1 = 1) is not accepted, Coq says it is unable to find an interpretation for (EqLink R nat ?C).
We thus have to add all these cases manually.

Fixpoint ec_map {A B : Type} (f : A -> B) (c : EqualChain A) : EqualChain B :=
  match c with
    | base_ec _ x (rel,y) => base_ec _ (f x) (rel,f y)
    | link_ec_eq _ ec (rel,z) => link_ec_eq _ (ec_map f ec) (rel, f z)
  end.

Fixpoint lc_map {A B : Type} (f : A -> B) (c : LessChain A) : LessChain B :=
  match c with
    | base_lc _ x (rel,y) => base_lc _ (f x) (rel, f y)
    | link_ec_less _ ec (rel,z) => link_ec_less _ (ec_map f ec) (rel, f z)
    | link_lc_eq _ lc (rel,z) => link_lc_eq _ (lc_map f lc) (rel, f z)
    | link_lc_less _ lc (rel,z) => link_lc_less _ (lc_map f lc) (rel, f z)
  end.

Fixpoint gc_map {A B : Type} (f : A -> B) (c : GreaterChain A) : GreaterChain B :=
  match c with
    | base_gc _ x (rel,y) => base_gc _ (f x) (rel, f y)
    | link_ec_grtr _ ec (rel,z) => link_ec_grtr _ (ec_map f ec) (rel, f z)
    | link_gc_eq _ gc (rel,z) => link_gc_eq _ (gc_map f gc) (rel, f z)
    | link_gc_grtr _ gc (rel,z) => link_gc_grtr _ (gc_map f gc) (rel, f z)
  end.

Definition snd_map {A B C : Type} (f : B -> C) (z : A * B) : A * C := (fst z, f (snd z)).

Embedding INR : nat -> R

EqualChain

#[export] Instance base_ec_nat_R : ChainBase nat (EqualRel * R) (EqualChain R) := fun n lx => base_ec R (INR n) lx.
#[export] Instance base_ec_R_nat : ChainBase R (EqualRel * nat) (EqualChain R) := fun x ln => base_ec R x (snd_map INR ln).

#[export] Instance link_ec_eq_nat_R : ChainLink (EqualChain nat) (EqualRel * R) (EqualChain R) :=
  fun ecn lx => link_ec_eq R (ec_map INR ecn) lx.

#[export] Instance link_ec_eq_R_nat : ChainLink (EqualChain R) (EqualRel * nat) (EqualChain R) :=
  fun ecx ln => link_ec_eq R ecx (snd_map INR ln).

LessChain

#[export] Instance base_lc_nat_R : ChainBase nat (LessRel * R) (LessChain R) := fun n lx => base_lc R (INR n) lx.
#[export] Instance base_lc_R_nat : ChainBase R (LessRel * nat) (LessChain R) := fun x ln => base_lc R x (snd_map INR ln).

#[export] Instance link_ec_less_nat_R : ChainLink (EqualChain nat) (LessRel * R) (LessChain R) :=
  fun ecn lx => link_ec_less R (ec_map INR ecn) lx.

#[export] Instance link_ec_less_R_nat : ChainLink (EqualChain R) (LessRel * nat) (LessChain R) :=
  fun ecx ln => link_ec_less R ecx (snd_map INR ln).

#[export] Instance link_lc_eq_nat_R : ChainLink (LessChain nat) (EqualRel * R) (LessChain R) :=
  fun lcn x => link_lc_eq R (lc_map INR lcn) x.

#[export] Instance link_lc_eq_R_nat : ChainLink (LessChain R) (EqualRel * nat) (LessChain R) :=
  fun lcx ln => link_lc_eq R lcx (snd_map INR ln).

#[export] Instance link_lc_less_nat_R : ChainLink (LessChain nat) (LessRel * R) (LessChain R) :=
  fun lcn lx => link_lc_less R (lc_map INR lcn) lx.

#[export] Instance link_lc_less_R_nat : ChainLink (LessChain R) (LessRel * nat) (LessChain R) :=
  fun lcx ln => link_lc_less R lcx (snd_map INR ln).

GreaterChain

Embedding IZR : Z -> R

EqualChain

#[export] Instance base_ec_Z_R : ChainBase Z (EqualRel * R) (EqualChain R) := fun n lx => base_ec R (IZR n) lx.
#[export] Instance base_ec_R_Z : ChainBase R (EqualRel * Z) (EqualChain R) := fun x ln => base_ec R x (snd_map IZR ln).

#[export] Instance link_ec_eq_Z_R : ChainLink (EqualChain Z) (EqualRel * R) (EqualChain R) :=
  fun ecn lx => link_ec_eq R (ec_map IZR ecn) lx.

#[export] Instance link_ec_eq_R_Z : ChainLink (EqualChain R) (EqualRel * Z) (EqualChain R) :=
  fun ecx ln => link_ec_eq R ecx (snd_map IZR ln).

LessChain

#[export] Instance base_lc_Z_R : ChainBase Z (LessRel * R) (LessChain R) := fun n lx => base_lc R (IZR n) lx.
#[export] Instance base_lc_R_Z : ChainBase R (LessRel * Z) (LessChain R) := fun x ln => base_lc R x (snd_map IZR ln).

#[export] Instance link_ec_less_Z_R : ChainLink (EqualChain Z) (LessRel * R) (LessChain R) :=
  fun ecn lx => link_ec_less R (ec_map IZR ecn) lx.

#[export] Instance link_ec_less_R_Z : ChainLink (EqualChain R) (LessRel * Z) (LessChain R) :=
  fun ecx ln => link_ec_less R ecx (snd_map IZR ln).

#[export] Instance link_lc_eq_Z_R : ChainLink (LessChain Z) (EqualRel * R) (LessChain R) :=
  fun lcn x => link_lc_eq R (lc_map IZR lcn) x.

#[export] Instance link_lc_eq_R_Z : ChainLink (LessChain R) (EqualRel * Z) (LessChain R) :=
  fun lcx ln => link_lc_eq R lcx (snd_map IZR ln).

#[export] Instance link_lc_less_Z_R : ChainLink (LessChain Z) (LessRel * R) (LessChain R) :=
  fun lcn lx => link_lc_less R (lc_map IZR lcn) lx.

#[export] Instance link_lc_less_R_Z : ChainLink (LessChain R) (LessRel * Z) (LessChain R) :=
  fun lcx ln => link_lc_less R lcx (snd_map IZR ln).

GreaterChain

#[export] Instance base_gc_Z_R : ChainBase Z (GreaterRel * R) (GreaterChain R) := fun n lx => base_gc R (IZR n) lx.
#[export] Instance base_gc_R_Z : ChainBase R (GreaterRel * Z) (GreaterChain R) := fun x ln => base_gc R x (snd_map IZR ln).

#[export] Instance link_ec_grtr_Z_R : ChainLink (EqualChain Z) (GreaterRel * R) (GreaterChain R) :=
  fun ecn lx => link_ec_grtr R (ec_map IZR ecn) lx.

#[export] Instance link_ec_grtr_R_Z : ChainLink (EqualChain R) (GreaterRel * Z) (GreaterChain R) :=
  fun ecx ln => link_ec_grtr R ecx (snd_map IZR ln).

#[export] Instance link_gc_eq_Z_R : ChainLink (GreaterChain Z) (EqualRel * R) (GreaterChain R) :=
  fun gcn x => link_gc_eq R (gc_map IZR gcn) x.

#[export] Instance link_gc_eq_R_Z : ChainLink (GreaterChain R) (EqualRel * Z) (GreaterChain R) :=
  fun gcx ln => link_gc_eq R gcx (snd_map IZR ln).

#[export] Instance link_gc_grtr_Z_R : ChainLink (GreaterChain Z) (GreaterRel * R) (GreaterChain R) :=
  fun gcn lx => link_gc_grtr R (gc_map IZR gcn) lx.

#[export] Instance link_gc_grtr_R_Z : ChainLink (GreaterChain R) (GreaterRel * Z) (GreaterChain R) :=
  fun gcx ln => link_gc_grtr R gcx (snd_map IZR ln).